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Stochastic resonance in Ising systems
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We study by Monte Carlo techniques the evolution of finite two-dimensional Ising systems in oscillat-
ing magnetic fields. The phenomenon of stochastic resonance is observed. The characteristic peak ob-
tained for the correlation function between the external field and magnetization, versus the temperature
of the system, is studied for various external fields and lattice sizes.

PACS number(s): 05.40.+j, 75.10.—b, 02.70.Lq

I. INTRODUCTION

A periodically modulated bistable system in the pres-
ence of noise exhibits the phenomenon of stochastic reso-
nance (SR) [1-3]. Plotting the correlation o between the
modulation signal and the response of the system versus
the noise intensity, we usually obtain a strong peak. This
characteristic picture is described in the literature as the
phenomenon of SR. A brief review of the theoretical as-
pects is given in [4]. Experimental evidence for the SR
phenomenon was found in analog simulations with prop-
er electronic circuits [3,5,6], laser systems operating in
multistable conditions [7], electron paramagnetic reso-
nance [8,9], and in a free standing magnetoelastic ribbon
[10].

In the present paper we report on the possibility of ob-
taining SR in a bidimensional Ising system. The
phenomenon of SR has already been studied in globally
coupled two-state systems [11,12]. Due to the fact that
the spins in the Ising model can be considered as coupled
bistable elements, the proposed system is a special case of
the problem treated in [11]. In contrast with all earlier
works, we do not consider any external stochastic forces,
just the thermal fluctuations in the system.

II. THE METHOD

Considering an Ising system on a finite square lattice at
zero thermodynamic temperature, the free-energy curve
versus the magnetization will have a double well form
[13]. An external oscillating magnetic field will modulate
the two minima in antiphase. The effect of a positive
temperature in this system can be considered as a sto-
chastic driving force, and the magnetization as a function
of the time [m (¢)=3;S7] as the response function of the
system. In this way all the necessary conditions are
satisfied for the SR phenomenon. Due to the fact that
the noise intensity (thermal fluctuations) is temperature
dependent, the characteristic peak must be observed for a
resonance temperature 7, in the plot of the correlation
(o) versus the temperature (7).
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It is worth mentioning that recently the Ising system in
oscillating fields was considered by computer simulations,
studying the hysteretic response of the system [14].

We studied the SR in the proposed system by a Monte
Carlo method using the well-known Metropolis algo-
rithm [15]. The Hamiltonian of the problem is

H=—J 3 SiSi+ugB(t) 3 S7, (1)
ij i
where the sum is referring to all nearest neighbors,
S7==1, pup is the Bohr magneton, and B (¢) the external
magnetic field. We will consider B(¢) in a harmonic
form:

B(t)= A sin

2?7” ()

The time scale was chosen in a convenient form, setting
the unit-time interval equal to the average characteristic
time (7) necessary for the flip of a spin. We have taken
this time interval 7 as a constant, and thus independent of
the temperature. Although this assumption is just a
working hypothesis, we expect useful qualitative results.

Our Monte Carlo (MC) simulations were performed on
square lattices with NV X N spins, considering the value of
N up to 200. One MC step is defined as N XN trials of
changing spin orientations and corresponds to a time in-
terval 7. (The period P of the oscillating magnetic field is
also given in these 7 units.) The amplitude A4 of the mag-
netic field is considered already multiplied by up /k, and
thus it has the dimensionality of the temperature (k is the
Boltzmann constant). The temperature is given in arbi-
trary units. The critical temperature of the infinite sys-
tem,

J

k ’
is always considered as 100 units. Starting the system
from a completely random configuration, to approach the
dynamic thermodynamic equilibrium we considered 5000

MC steps. The correlation function between the driving
field and the magnetic response of the system,

T,=2.2692... X 3)

o=(B(t)m(t))= B(t;)m(¢;) , )

N ]»—‘
M=

i=1
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FIG. 1. Characteristic peak for the SR phenomenon in the
plot of the correlation [0 = { B(¢)m(t))] versus the system tem-
perature (7,=100, 4 =10, P =50, and N =5).

was studied during n =5000 extra iterations. (The
averaging in the expression for ¢ is as a function of time,
and t;=7i.) The correlation (4) was studied as a function
of

(i) the temperature (T),

(ii) the lattice size (N),

(iii) the amplitude of the magnetic field ( 4), and

(iv) the period of the magnetic field (P).

III. RESULTS

Our results are summarized in Figs. 1-4. As we ex-
pected, for a fixed lattice size and a given oscillating
magnetic field the curve o versus T exhibits the charac-
teristic peak of SR. Considering 4 =10, P =50, and
N =5 a generic result is plotted in Fig. 1. From Fig. 2 we
conclude that the location of the peak is not significantly
influenced by the amplitude of the magnetic field. As ex-
pected, the amplitude influenced only the shape of the
peak, and its height increases strongly with the ampli-
tude. (Our results would suggest an exponential type
variation.) For small lattices (N <10) this resonance
temperature (T) exhibits a strong dependence on the
lattice size, and converges to a T, limiting value for big
lattices (N > 100):

T,= lim TN . (5

In Fig. 3 we present the results for three choices of P.
One can immediately observe that the resonance temper-
ature T, is dependent on the period of the magnetic field.
As we illustrated in Fig. 4 this dependence can be ap-
proximated with the curve
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FIG. 2. Shape of the peak for three different values of the
magnetic field amplitude (4 =5 A, 10 @, and 20 W) (T, =100,
P =50, and N =5).
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FIG. 3. Dependence of the resonance temperature versus the
lattice linear size for three different values of the period (20 A,
50 @, and 200 W) (T.=100 and 4 =10).

T,=T,+557.264P 06335 (6

In the limit of high frequencies the resonance tempera-
ture is tending to infinity and in the limit of small ones T,
is tending to T,. Due to the fact that the real experimen-
tal conditions work in the very low frequency limit (the
periods in Fig. 4 are given in units of 7), one would expect
this phenomenon to be detected at T,.

IV. CONCLUSIONS

In conclusion, in this work we studied by MC tech-
niques the phenomenon of SR in finite Ising systems con-
sidered in a periodic magnetic field. The thermal fluctua-
tions were considered as a stochastic force, and the reso-
nance was detected for a resonance temperature 7,. The
dependence of T, on the characteristics of the magnetic
field and the lattice size was investigated.

Due to the sensitivity of 7, to the size of the system
(Fig. 3 for small N) an interesting subject would be the
study of this effect on materials containing small magnet-
ic domains. From the computational point of view, a
much more detailed study of the phenomenon, and the
consideration of a three-dimensional case would also be
of interest.

The theory of SR has previously been developed in the
context of classical statistical physics using linear
response theory and the fluctuation-dissipation relations
[16—-18]. In this sense, by calculating the susceptibility of
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FIG. 4. Variation of the resonance temperature (7, — T, ) for
big lattices (200X 200) against the period of the magnetic field.
The best-fit curve indicates T, — T, =557.264P ~%-63%,
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our model in the absence of the periodic magnetic field
and studying the response of the system with the linear
response theory one could perform analytical studies of
the problem. We consider that such studies would be im-
portant both for statistical physics and for the phenom-
enon of SR.
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